Wir legen Wert auf Sicherheit. Deswegen wird die Unterstützung für den Internet Explorer nicht mehr durch unsere Website bereitgestellt. Bitte verwenden Sie einen anderen Browser, zum Beispiel Google Chrome, Firefox oder Edge
Telefon: 07141 9790-0
, E-Mail: info@mhplus.de
Eine Grafik mit einem Gehirn und einer Spritze. Die Nadel der Spritze zeigt auf das Gehirn.
Zurück

Insulin wirkt im ganzen Körper Diabetes beginnt im Gehirn

Das Gehirn bestimmt, ob der Stoffwechsel funktioniert. Reagiert es nicht empfindlich genug auf Insulin, nehmen Leber-, Fett- und Muskelgewebe zu wenig Glukose auf und der Blutzuckerspiegel steigt. Gewichtszunahme und Typ-2-Diabetes können die Folge sein.

So reagieren Gehrin und Körper

„Die Teile des Gehirns, die auf das Hormon Insulin reagieren, sind wichtig für die Nahrungsaufnahme und den Stoffwechsel. Aktuelle Studien zeigen, dass eine Insulinresistenz im Gehirn zu massiven Stoffwechselstörungen führen kann, die eine Fettleibigkeit verstärken und in Diabetes münden können“, erläutert der Sprecher des Deutsches Zentrums für Diabetesforschung (DZD), Prof. Andreas Birkenfeld. „Unser Ziel ist es, präzise Behandlungsformen für Menschen zu finden, deren Gehirn nicht mehr ausreichend auf das Stoffwechselhormon reagiert.“

DZD-Wissenschaftler:innen haben herausgefunden, dass Insulin offenbar nicht nur im Leber-, Muskel- und Fettgewebe wirkt, sondern auch im Gehirn. Auf diese Weise kann es den Stoffwechsel im gesamten Körper beeinflussen. Dieser Prozess stellt sicher, dass nach der Nahrungsaufnahme Energie im Körper gespeichert und der Stoffwechsel gut kontrolliert wird. Leider sind etliche Menschen von einer Insulinresistenz des Gehirns betroffen, was langfristig eine Gewichtszunahme fördert.

Auswirkung auf den Körper

Betroffene Menschen speichern Fett vor allem im Bauch und in der Leber, wodurch ihr Risiko für Folgeerkrankungen steigt. Neue Untersuchungen zeigen, dass die Insulinresistenz des Gehirns behandelbar sein könnte. Sowohl die Gabe des SGLT2-Inhibitors Empagliflozin als auch regelmäßiger Sport hatten einen messbaren Effekt auf die Insulinresistenz des Gehirns.

Auf zellulärer Ebene erhöht Insulin die Aktivität der Mitochondrien, um ausreichende Mengen an Energie für eine gesunde Funktion des Nervensystems zu generieren. Dementsprechend kommt es bei einer neuronalen Insulinresistenz zu einer mitochondrialen Dysfunktion, Adipositas und Kognitionsstörungen. Im Umkehrschluss beeinflusst die mitochondriale Funktion die neuronale Insulinsensitivität und den Stoffwechsel maßgeblich. Das Wissen darum könnte dazu beitragen, neuartige Interventionsstrategien zu entwickeln, um Adipositas und Typ-2-Diabetes, aber auch kognitiven Einschränkungen vorzubeugen.

Unterschiede zwischen Frauen und Männern

Die Wirkung von Insulin in Hirnregionen, die wichtig für Gedächtnis, Belohnung und Kognition sind, unterschiedet sich maßgeblich zwischen Frauen und Männern. Prof. Stephanie Kullmann und ihr Team haben herausgefunden, dass Frauen vor allem mit zunehmendem Alter eine Insulinresistenz im Hippocampus zeigen. Auch die hormonellen Veränderungen während der Lutealphase des Menstruationszyklus dämpfen offenbar die Wirkung von Insulin in Hirnregionen, die wichtig für Gedächtnis und Belohnungsprozesse sind.

Neue Mediamente sollen helfen

Da die Ursachen für Adipositas und Typ-2-Diabetes auch im Gehirn liegen, zielen neue Medikamente auch darauf ab, das Zentralnervensystem ansteuern. Dieses ist mit der Entwicklung von Polyagonisten gelungen, welche die Effekte von körpereigenen Darmhormonen wie etwa GLP-1 und GIP zu hochwirksamen Ko-Agonisten kombinieren und im Gehirn regulierend in relevante Stoffwechselprozesse eingreifen. So senken GLP-1:GIP Ko-Agonisten das Körpergewicht effektiver als GLP-1-Monoagonisten wie etwa Semaglutid. DZD-Wissenschaftler Prof. Timo Müller und sein Team haben die Wirkmechanismen von GIP und GIP:GLP-1-Ko-Agonisten untersucht und zeigen, dass GIP über dessen Wirkung am GIP-Rezeptor von entscheidender Bedeutung für die Wirksamkeit der Ko-Agonisten ist.

Zum Seitenanfang springen